The Pytkeev and Strong Pytkeev Properties for topological groups and topological spaces

JERZY KĄKOL, A. MICKIEWICZ UNIVERSITY, POZNAŃ

30th Summer Topology Conference, Galway, June 23-26, 2015
Introduction

1. There are many Fréchet-Urysohn lcs which are not metrizable. For example any space $C_p(X)$ over an uncountable compact scattered X is such an example.

2. On the other hand we have very recent

Theorem 1 (Hrusak-Ramos Garcia (Malykhin problem))

There exists a model in ZFC where every separable Fréchet-Uryshn group is metrizable.

The following problem have been attracted specialists from a long time:

Problem 2

Describe possible good sufficient conditions under which any Fréchet-Urysohn group is metrizable.
Pytkeev proved that every **sequential** space satisfies the property (so-called **Pytkeev property**) which is stronger than countable tightness.

Definition 3

A topological space Y has the **Pytkeev property** if for each $A \subseteq Y$ and each $y \in \overline{A} \setminus A$, there are infinite subsets A_1, A_2, \ldots of A such that each neighbourhood of y contains some A_n.

Definition 4 (Tsaban-Zdomsky)

A topological space Y has the **strong Pytkeev property** if for each $y \in Y$ there exists a countable family \mathcal{D} of subsets of Y such that for each neighbourhood U of y and each $A \subseteq Y$ with $y \in \overline{A} \setminus A$, there is $D \in \mathcal{D}$ such that $D \subseteq U$ and $D \cap A$ is infinite.
More definitions and relations:

Definition 5 (Banakh-Zdomsky)

Y has *countable cs*-character if for each $y \in Y$ there is a countable family D of subsets of Y such that for each non-trivial sequence in Y converging to y and each neighbourhood U of y, there is $D \in D$ with $D \subset U$ and D contains infinitely many elements of that sequence.

Theorem 6 (Banakh-Zdomsky)

A Fréchet-Urysohn topological group is metrizable iff it has countable cs*-character. A Baire topological group is metrizable iff it is sequential and has countable cs*-character.

We call X a *P-sequential* space if X is a sequential space satisfying the strong Pytkeev property.
1. Fréchet-Urysohn \Rightarrow sequential \Rightarrow Pytkeev property \Rightarrow countable tightness.

2. First countable \Rightarrow P-sequential \Rightarrow strong Pytkeev property \Rightarrow countable cs*-character.

3. Fréchet-Urysohn $\not\Rightarrow$ strong Pytkeev property $\not\Rightarrow k$-space.

Theorem 7 (Gabriyelyan, Kakol)

A Baire tvs is metrizable iff it has countable cs*-character. A b-Baire-like lcs is metrizable iff it has countable cs*-character.

Second part of theorem extends a theorem of Sakai (2008) stating that the space $C_p(X)$ is metrizable iff $C_p(X)$ has countable cs*-character (note that every $C_p(X)$ is b-Baire-like). Both parts use the concept of a G-base.
Topological groups with a \mathcal{G}-base

Definition 8 (Cascales, Kakol, Saxon for tvs)

Let G be a topological group. A family $\mathcal{U} := \{U_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$ of neighbourhoods of the unit e is called a \mathcal{G}-base if \mathcal{U} is a base of neighbourhoods at the unit and $U_\beta \subseteq U_\alpha$ whenever $\alpha \leq \beta$ for all $\alpha, \beta \in \mathbb{N}^\mathbb{N}$.

Every metrizable group G admits a \mathcal{G}-base $\{U_{\alpha_1} : (\alpha_i) \in \mathbb{N}^\mathbb{N}\}$, where $\{U_n\}_{n \in \mathbb{N}}$ - decreasing base of neighbourhoods at e of G.

1. A topological group G is metrizable iff G is Fréchet-Urysohn and has a \mathcal{G}-base. (G-Ka-L)

2. Any precompact set in a topological group $G \in TG_{\mathcal{G}}$ is metrizable, and hence G is strictly angelic. (G-Ka-L)

3. Next theorem uses the concept of a \mathcal{G}-base.
We say that a topological space X has a compact resolution swallowing compact sets if X admits a family $\{K_\alpha : \alpha \in \mathbb{N}^\mathbb{N}\}$ of compact sets, $K_\alpha \subset K_\beta$, whenever $\alpha \leq \beta$ and each compact set of X is contained in some K_α.

Theorem 9 (Gabriyelyan, Kakol, Leiderman)

Let X be space which admits a compact resolution swallowing compact sets. Then the following are equivalent:

1. $C_c(X)$ has the strong Pytkeev property.
2. $C_c(X)$ has the Pytkeev property.
3. $C_c(X)$ has countable tightness.
4. $C_p(X)$ has countable tightness.
5. $C_c(X)$ is barrelled.
6. X is Lindelöf.
This extends Tsaban-Zdomsky’s theorem stating that $C_c(X)$ has the strong Pytkeev property for Polish X.

$C_c(X)$ has a \mathcal{G}-base iff X has a compact resolution swallowing compact sets (Ferrando, Kakol).

Every topological group with a \mathcal{G}-base which is a k-space is strongly Pytkeev (G-Ka-L).

If E is a lcs with a \mathcal{G}-base, then E is a k-space iff E is metrizable or E is homeomorphic to ϕ or $\phi \times Q$, where Q is the Hilbert cube (G-Ka-L).

Corollary 10

Let X be a Čech-complete space. Then $C_c(X)$ has the strong Pytkeev property if and only if X is Lindelöf.
A necessary condition for topological groups satisfying the strong Pytkeev property.

Theorem 11

Let G be a topological group with the strong Pytkeev property. Then G has a base $\{U_\alpha : \alpha \in \mathcal{M}\}$ of neighbourhoods at e, where

(i) \mathcal{M} is a subset of the partially ordered set $\mathbb{N}^\mathbb{N}$;

(ii) if $\alpha \in \mathcal{M}$ and $\beta \in \mathbb{N}^\mathbb{N}$ are such that $\beta \leq \alpha$, then $\beta \in \mathcal{M}$;

(iii) $U_\beta \subseteq U_\alpha$, whenever $\alpha \leq \beta$ for $\alpha, \beta \in \mathcal{M}$.
A sufficient condition for topological groups to have the strong Pytkeev property.

1. Ω - a set, I - a partially ordered set with an order ≤. A family \(\{A_i\}_{i \in I} \) of subsets of Ω is \(I\text{-decreasing} \) if \(A_j \subseteq A_i \) for every \(i \leq j \) in I. Example: \(\mathbb{N}^\mathbb{N} \) endowed with the order, i.e., \(\alpha \leq \beta \) if \(\alpha_i \leq \beta_i, \ i \in \mathbb{N}, \ \alpha = (\alpha_i)_{i \in \mathbb{N}}, \ \beta = (\beta_i)_{i \in \mathbb{N}} \).

2. For \(\alpha = (\alpha_i)_{i \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}, \ k \in \mathbb{N} \), set \(I_k(\alpha) := \{\beta \in \mathbb{N}^\mathbb{N} : \beta_i = \alpha_i, \ i = 1, \ldots, k\} \).

3. Let \(M \subseteq \mathbb{N}^\mathbb{N} \) and \(\mathcal{U} = \{U_\alpha : \alpha \in M\} \) be an \(M \)-decreasing family of subsets of a set Ω. Define the (countable) family \(\mathcal{D}_\mathcal{U} \) of subsets of Ω by \(\mathcal{D}_\mathcal{U} := \{D_k(\alpha) : \alpha \in M, k \in \mathbb{N}\} \), where \(D_k(\alpha) = \bigcap_{\beta \in I_k(\alpha) \cap M} U_\beta \).

4. We say that \(\mathcal{U} \) satisfies the condition (D) if \(U_\alpha = \bigcup_{k \in \mathbb{N}} D_k(\alpha) \) for every \(\alpha \in M \).
Theorem 12 (Gabriyelyan, Kakol, Leiderman)

Let G be a topological group with a \mathcal{G}-base satisfying condition (D). Then G has the strong Pytkeev property.

1. A quasibarrelled lsc with a \mathcal{G}-base satisfies condition (D).
2. Every (DF)-space with countable tightness has a \mathcal{G}-base with condition (D). (Cascales-Kakol-Saxon).
Applications: Last theorem applies to obtain the following

Theorem 13 (Gabriyelyan, Kakol, Leiderman)

(i) A (DF)-space E has countable tightness iff E has the strong Pytkeev property.

(ii) Every strict (LM)-space has the strong Pytkeev property.

(iii) Let $(E', \beta(E', E))$ be the strong dual of a strict (LF)-space E. Then (a) $(E', \beta(E', E))$ has a \mathfrak{G}-base. (b) $(E', \beta(E', E))$ has countable tightness iff $(E', \beta(E', E))$ has the strong Pytkeev property.

Any space E mentioned above is metrizable iff E is Fréchet-Urysohn (since the strong Pytkeev property $+$ Fréchet-Urysohn \Rightarrow metrizable.) Therefore, for example, $\mathcal{D}'(\Omega)$ has the strong Pytkeev property, and in particular, it has countable tightness.
Topological description of cosmic and \aleph_0-spaces.

Definition 14

A topological space X has a **small base** if there exists an M-decreasing base of τ for some $M \subseteq \mathbb{N}^\mathbb{N}$.

Theorem 15 (Gabriyelyan, Kakol, Kubzdela, Lopez-Pellicer)

Let $X := (X, \tau)$ be a regular topological space. Then:

(i) X is cosmic iff X has a small base $\mathcal{U} = \{ U_\alpha : \alpha \in M \}$ with (D). The family $\mathcal{D}_\mathcal{U}$ is a countable network in X.

(ii) X is an \aleph_0-space iff X has a small base $\mathcal{U} = \{ U_\alpha : \alpha \in M \}$ with (D) such that $\mathcal{D}_\mathcal{U}$ is a countable k-network in X.

There is a small base \mathcal{U} such that $U_\alpha \neq U_\beta$ for $\alpha \neq \beta$ and $\mathcal{U} = \tau$, i.e. for any $W \in \tau$ there is $\alpha \in M$ with $W = U_\alpha$.
Condition (D) is essential: The Bohr compactification $b\mathbb{Z}$ of the discrete group \mathbb{Z} has a small base and $b\mathbb{Z}$ is not cosmic as nonmetrizable.

Theorem 16 (Gabriyelyan, Kakol)

A Baire topological group is metrizable iff G has the strong Pytkeev property iff G has a \mathfrak{S}-base with condition (D).

Theorem 17 (Gabriyelyan-Kakol-Zdomsky)

(i) A Banach space E is finite-dimensional iff E_w has the Pytkeev property. (ii) B_w has the Pytkeev property iff E does not contain ℓ_1. (iii) B_w is metrizable iff B_w has the strong Pytkeev property iff E' is separable.

James tree $JT \not\cong \ell_1$, JT^* is nonseparable, JT has a Kadets norm under which B_w is Baire with the Pytkeev property.
The last results yield

Corollary 18

A Baire separable topological group G is metrizable iff G is cosmic.

Question 19

Let G be a topological group (or even a TVS) with the strong Pytkeev property. Does G admit a \mathcal{G}-base?

We do not know an answer to this question even for submetrizable groups.